Arithmetic Properties of Generalized Rikuna Polynomials
نویسندگان
چکیده
منابع مشابه
Arithmetic Properties of Generalized Euler Numbers
The generalized Euler number En|k counts the number of permutations of {1, 2, . . . , n} which have a descent in position m if and only if m is divisible by k. The classical Euler numbers are the special case when k = 2. In this paper, we study divisibility properties of a q-analog of En|k. In particular, we generalize two theorems of Andrews and Gessel [3] about factors of the q-tangent numbers.
متن کاملSome new properties of Generalized Bernstein polynomials
Let Bm(f) be the Bernstein polynomial of degree m. The Generalized Bernstein polynomials
متن کاملGeneralized numerical ranges of matrix polynomials
In this paper, we introduce the notions of C-numerical range and C-spectrum of matrix polynomials. Some algebraic and geometrical properties are investigated. We also study the relationship between the C-numerical range of a matrix polynomial and the joint C-numerical range of its coefficients.
متن کاملArithmetic Properties of Eigenvalues of Generalized Harper Operators on Graphs
Let Q denote the field of algebraic numbers in C. A discrete group G is said to have the σ-multiplier algebraic eigenvalue property, if for every matrix A ∈ Md(Q(G,σ)), regarded as an operator on l(G), the eigenvalues of A are algebraic numbers, where σ ∈ Z(G,U(Q)) is an algebraic multiplier, and U(Q) denotes the unitary elements of Q. Such operators include the Harper operator and the discrete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications Mathématiques de Besançon
سال: 2015
ISSN: 2592-6616
DOI: 10.5802/pmb.2